
Introduction to R
Part 1 – base R

Part 1 Outline

1. How to get set up using R

2. How and why to use RStudio & R Markdown (.Rmd)

3. Basics of programming

▪ Data types

▪ Functions

▪ Reading/writing files

▪ Troubleshooting

R: The premier data analysis and
visualization platform

https://cran.r-project.org/

https://cran.r-project.org/

R Studio:
A nice user interface for R

https://www.rstudio.com/products/rstudio/download/

https://www.rstudio.com/products/rstudio/download/

Open Coding Hour:
Your resource for all things informatics

Access R Studio through your web browser

1. https://gsafcomp01.ccbb.utexas.edu/

2. https://gsafcomp02.ccbb.utexas.edu/

https://gsafcomp01.ccbb.utexas.edu/
https://gsafcomp02.ccbb.utexas.edu/

Select RStudio

Sign in with your student# and password

Refer to class email for your individual username

R Markdown

R Markdown:
Writing documents with embedded R code

R Markdown:
Writing documents with embedded R code

We convert R Markdown to HTML by
“knitting” the Markdown file

Markdown basics

http://rmarkdown.rstudio.com/authoring_basics.html

normal text

italics

bold

Header 1

Header 2

List:

1. Item 1

2. Item 2

3. Item 3

http://rmarkdown.rstudio.com/authoring_basics.html

Markdown basics

Embedded R code will be

evaluated and printed

```{r}

head(cars)

plot(cars$speed, cars$dist)

```


Different ways to execute code in RStudio

Press the “Run” button

Highlight code you want to execute and press
ctrl+Enter (cmd+Enter on Macs)

Place pointer on line of code you want to execute,
press ctrl+Enter (cmd+Enter on Macs)

Use ctrl+Shift+Enter (cmd+Shift+Enter on
Macs) to execute an entire code chunk

Shortcuts for coding

• Ctrl+Shift+C (Cmd+Shift+C on Macs) will

comment/uncomment a line or multiple lines

• Tab and Shift+Tab will indent and un-indent lines,

respectively

• Ctrl+Shift+M (Cmd+Shift+M on Macs) produces a

pipe operator %>% (will be used with the tidyverse

later in the course)

R Programming Basics

Assignments, numbers, vectors

> x <- 5

> x

[1] 5

Assign number 5 to variable x

> y <- c(1, 2, 3, 4, 5)

> y

[1] 1 2 3 4 5

Create vector, assign
to variable y

Calculate 5*x2+7> 5*x^2+7

[1] 132

Multiply each element
in y with the number in x

> x*y

[1] 5 10 15 20 25

Strings

> name <- “Rachael Cox"

> name

[1] “Rachael Cox"

A string contains text:

A vector of strings:

> animals <- c("cat", "mouse", "mouse",

"cat", "rabbit")

> animals

[1] "cat" "mouse" "mouse" "cat"

"rabbit"

Factors

Factors keep track of distinct categories (levels) in a
vector:

> animals

[1] "cat" "mouse" "mouse" "cat"

"rabbit”

> factor(animals)

[1] cat mouse mouse cat rabbit

Levels: cat mouse rabbit

Data frames

> pets <- data.frame(

family = c(1, 2, 3, 4, 5),

pet = animals

)

We use data frames to store data sets with multiple
variables:

> pets

family pet

1 1 cat

2 2 mouse

3 3 mouse

4 4 cat

5 5 rabbit

Data frames

> pets$family

[1] 1 2 3 4 5

We access individual columns in a data frame with $ + the
column name:

> pets$pet

[1] cat mouse mouse cat rabbit

Levels: cat mouse rabbit

Data frames

> cars

speed dist

1 4 2

2 4 10

3 7 4

4 7 22

5 8 16

6 9 10

7 10 18

8 10 26

9 10 34

R has many built-in data frames:

> chickwts

weight feed

1 179 horsebean

2 160 horsebean

3 136 horsebean

4 227 horsebean

...

11 309 linseed

12 229 linseed

13 181 linseed

14 141 linseed

Data frames

Available built-in datasets can be accessed with data()

Data frames

Data set information can be accessed with ?dataset

Data frames

> head(cars)

speed dist

1 4 2

2 4 10

3 7 4

4 7 22

5 8 16

6 9 10

>

The head() function shows the first few lines of a data
frame:

Functions

> head(cars)

Functions are called in the format function(argument)

Function name First argument

Functions

> head(cars, 8)

Functions can have any number of required arguments or
optional arguments

Function name First argument
(required)

Second argument
(optional; default = 6)

Functions

> head(cars, 8)

speed dist

1 4 2

2 4 10

3 7 4

4 7 22

5 8 16

6 9 10

7 10 18

8 10 26

>

head(cars, 8)will show the first 8 lines of the data
frame instead of the default 6:

Functions

> head(cars, 8)

speed dist

1 4 2

2 4 10

3 7 4

4 7 22

5 8 16

6 9 10

7 10 18

8 10 26

>

We can implicitly or explicitly pass arguments

> head(x=cars, n=8)

speed dist

1 4 2

2 4 10

3 7 4

4 7 22

5 8 16

6 9 10

7 10 18

8 10 26

>

Functions

More information about what a function does and/or
requires can be accessed with ?function

Functions

?function has argument information

Troubleshooting

Ask RStudio for help

Type ?function into console

Ask Google for help

Ask StackOverflow for help

Open Coding Hour:
Your resource for all things informatics

