Introduction to R

Part 1 – base R

Part 1 Outline

- 1. How to get set up using R
- 2. How and why to use RStudio & R Markdown (.Rmd)
- 3. Basics of programming
 - Data types
 - Functions
 - Reading/writing files
 - Troubleshooting

R: The premier data analysis and visualization platform

https://cran.r-project.org/

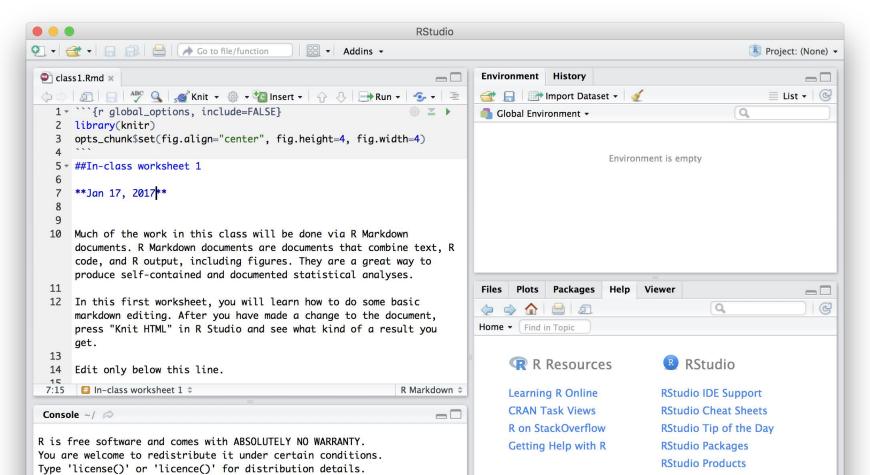
The Comprehensive R Archive Network

Download and Install R

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one of these versions of R:

- Download R for Linux
- Download R for (Mac) OS X
- Download R for Windows

R is part of many Linux distributions, you should check with your Linux package management system in addition to the link above.


Source Code for all Platforms

Windows and Mac users most likely want to download the precompiled binaries listed in the upper

R Studio: A nice user interface for R

https://www.rstudio.com/products/rstudio/download/

Open Coding Hour: Your resource for all things informatics

EVERYONEWELCOME

Students

Profs

Researchers

Newbies

Novice

Advanced

EVERY WEDNESDAY:

STUCK ON A COMPUTING PROBLEM?

WANT ADVICE ON ANALYSIS?

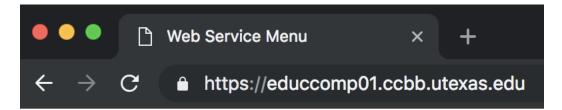
NEED HELP PLOTTING YOUR DATA?

WANT TO GET STARTED LEARNING TO PROGRAM?

WHEN

Wednesdays

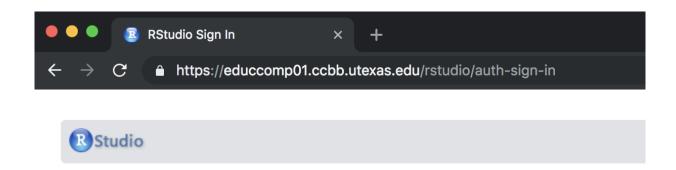
12:30-1:30pm

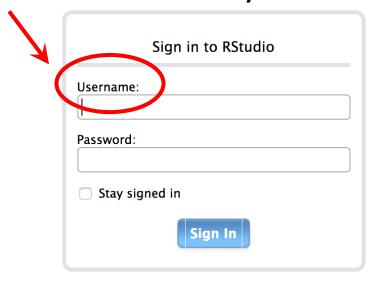

WHERE

MBB 2.232

Access R Studio through your web browser

- 1. https://gsafcomp01.ccbb.utexas.edu/
- 2. https://gsafcomp02.ccbb.utexas.edu/


Select RStudio


Please choose one of the following applications:

- RStudio -
- <u>Jupyterhub</u>

Sign in with your student# and password

Refer to class email for your individual username

R Markdown

R Markdown: Writing documents with embedded R code

```
🔎 class 1.Rmd 🛪
to Insert → 🔐 🕀 📑 Run → 🍜 →
 17 - ## 1. Basic Markdown editing
 18 Try out basic R Markdown features, as described
     [here.](http://rmarkdown.rstudio.com/authoring_basics.html) Write some text
     that is bold, and some that is in italics. Make a numbered list and a bulleted
     list. Make a nested list. Try the block-quote feature.
 19
 20 - ## 2. Embedding R code
 21
 22
     R code embedded in R chunks will be executed and the output will be shown.
 23 - ```{r}
 24 # R code goes here
 25 x <- 5
 26 y <- 7
 27 z <- x * v
 28
    Z
 29
 30
```

R Markdown: Writing documents with embedded R code

1. Basic Markdown editing

Try out basic R Markdown features, as described here. Write some text that is bold, and some that is in italics. Make a numbered list and a bulleted list. Make a nested list. Try the block-quote feature.

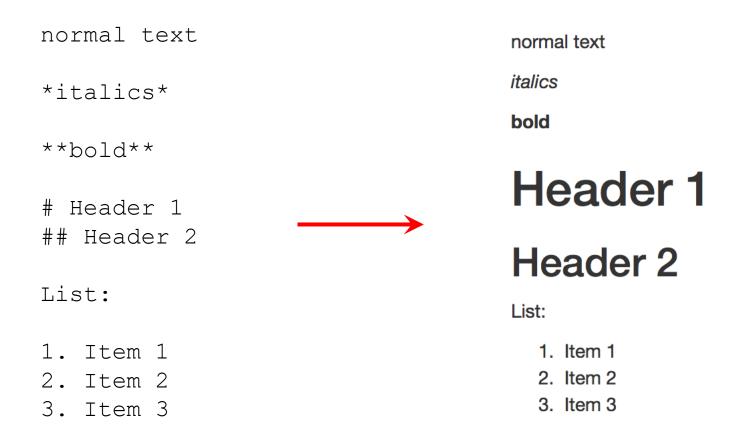
2. Embedding R code

R code embedded in R chunks will be executed and the output will be shown.

```
# R code goes here
x <- 5
y <- 7
z <- x * y</pre>
```

```
## [1] 35
```

We convert R Markdown to HTML by "knitting" the Markdown file


```
class 1.Rmd 🗱
                                             🚹 Insert 🕶 🔐 🕕 Run 🕶

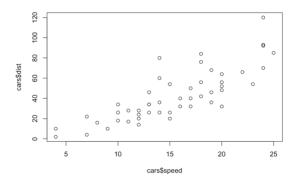
≪ Knit ▼

 17 - ## 1. Basic Markdown editing
 18 Try out basic R Markdown features, as described
     [here.](http://rmarkdown.rstudio.com/authoring_basics.html) Write some text
     that is bold, and some that is in italics. Make a numbered list and a bulleted
     list. Make a nested list. Try the block-quote feature.
 19
 20 - ## 2. Embedding R code
 21
     R code embedded in R chunks will be executed and the output will be shown.
 23 + ```{r}
    # R code goes here
    x <- 5
 26
    y <- 7
    Z <- X * V
 28
     7
 29
 30
 31
     Play around with some basic R code. E.g., take the built-in data set `cars`,
     which lists speed and stopping distance for cars from the 1920. Plot speed vs.
                and/on nonform a connolation analysis. Then white a few contences
```

Markdown basics

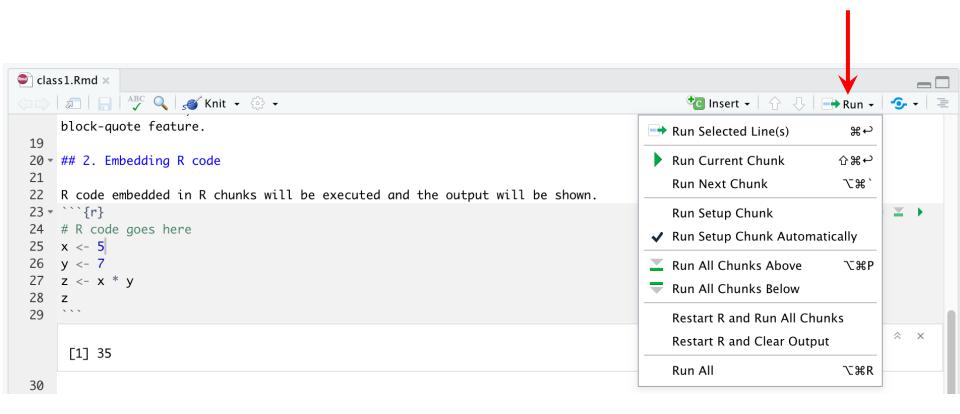
http://rmarkdown.rstudio.com/authoring basics.html

Markdown basics


```
Embedded R code will be evaluated and printed
```

```
```{r}
head(cars)
plot(cars$speed, cars$dist)
```

### Embedded R code will be evaluated and printed


```
head(cars)
```

plot(cars\$speed, cars\$dist)





### Press the "Run" button



# Highlight code you want to execute and press ctrl+Enter (cmd+Enter on Macs)

```
R code embedded in R chunks will be executed and the output will be shown.
```{r}
# R code goes here
v <- 7
z \leftarrow x * y
         Terminal ×
Console
                     Jobs ×
 ~/Desktop/projects/
> x <- 5
> y <- 7
> Z <- X * V
> Z
Γ1] 35
```

Place pointer on line of code you want to execute, press ctrl+Enter (cmd+Enter on Macs)

```
R code embedded in R chunks will be executed and the output will be shown.
```{r}
R code goes here
x < -5
y <- 7
z <- x * y
 Terminal ×
Console
 Jobs ×
 ~/Desktop/projects/
> Z <- X * V
```

# Use ctrl+Shift+Enter (cmd+Shift+Enter on Macs) to execute an entire code chunk

```
R code embedded in R chunks will be executed and the output will be shown.
```{r}
# R code goes here
x < -5
y <- 7
z <- x * y
Z
Console
         Terminal ×
                    Jobs ×
 ~/Desktop/projects/
> x <- 5
> y <- 7
> Z <- X * V
> Z
[1] 35
```

Shortcuts for coding

- Ctrl+Shift+C (Cmd+Shift+C on Macs) will comment/uncomment a line or multiple lines
- Tab and Shift+Tab will indent and un-indent lines, respectively
- Ctrl+Shift+M (Cmd+Shift+M on Macs) produces a pipe operator %>% (will be used with the tidyverse later in the course)

R Programming Basics

Assignments, numbers, vectors

```
> x < -5
                      Assign number 5 to variable x
> x
[1] 5
> 5*x^2+7
                      Calculate 5*x<sup>2</sup>+7
[1] 132
> y < -c(1, 2, 3, 4, 5) Create vector, assign
                                 to variable y
[1] 1 2 3 4 5
                            Multiply each element
> x * y
                           in y with the number in x
[1] 5 10 15 20 25
```

Strings

A string contains text:

```
> name <- "Rachael Cox"
> name
[1] "Rachael Cox"
```

A vector of strings:

```
> animals <- c("cat", "mouse", "mouse",
"cat", "rabbit")
> animals
[1] "cat" "mouse" "mouse" "cat"
"rabbit"
```

Factors

Factors keep track of distinct categories (levels) in a vector:

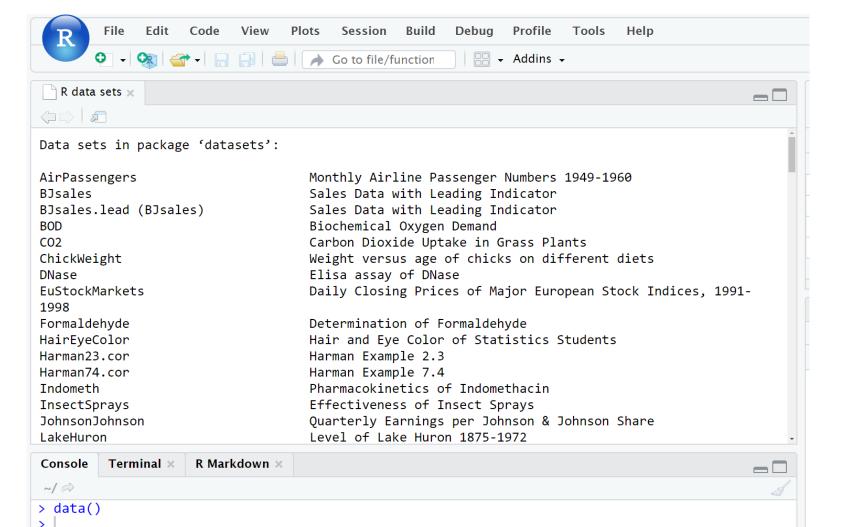
```
> animals
[1] "cat"     "mouse"     "cat"
"rabbit"

> factor(animals)
[1] cat     mouse     mouse     cat     rabbit
Levels: cat mouse rabbit
```

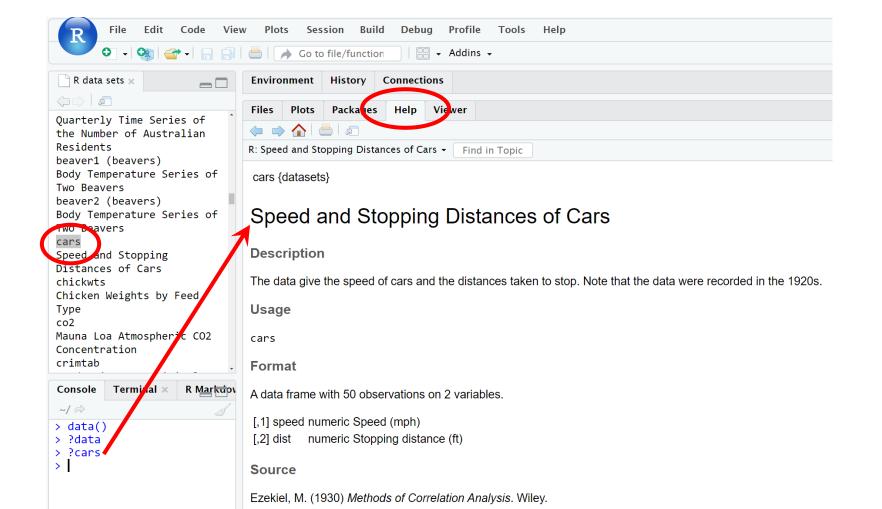
We use data frames to store data sets with multiple variables:

```
> pets <- data.frame(</pre>
    family = c(1, 2, 3, 4, 5),
    pet = animals
> pets
  family pet
             cat
           mouse
           mouse
             cat
```

We access individual columns in a data frame with \$ + the column name:

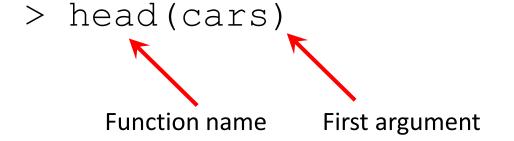

```
> pets$family [1] 1 2 3 4 5
```

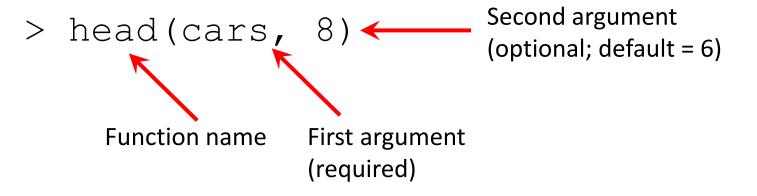
```
> pets$pet
[1] cat mouse mouse cat rabbit
Levels: cat mouse rabbit
```


R has many built-in data frames:

>	cars		>	chickwts	
	speed	dist		weight	feed
1	4	2	1	179	horsebean
2	4	10	2	160	horsebean
3	7	4	3	136	horsebean
4	7	22	4	227	horsebean
5	8	16	• •	• • •	• • •
6	9	10	11	309	linseed
7	10	18	12	229	linseed
8	10	26	13	181	linseed
9	10	34	14	141	linseed

Available built-in datasets can be accessed with data()

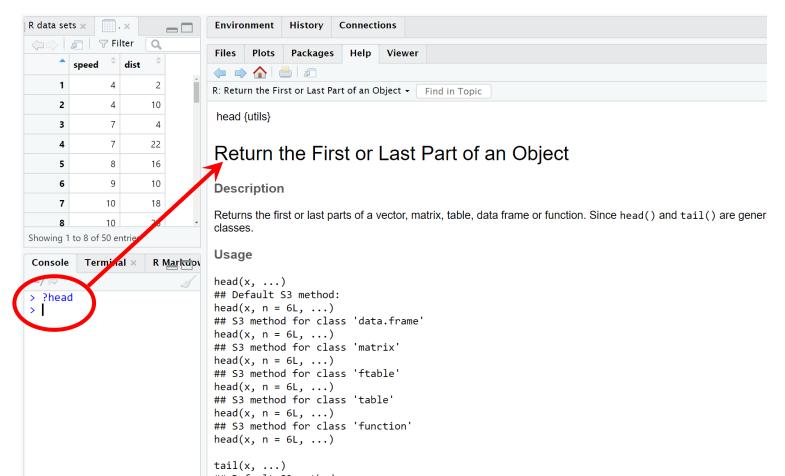

Data set information can be accessed with ?dataset


The head () function shows the first few lines of a data frame:

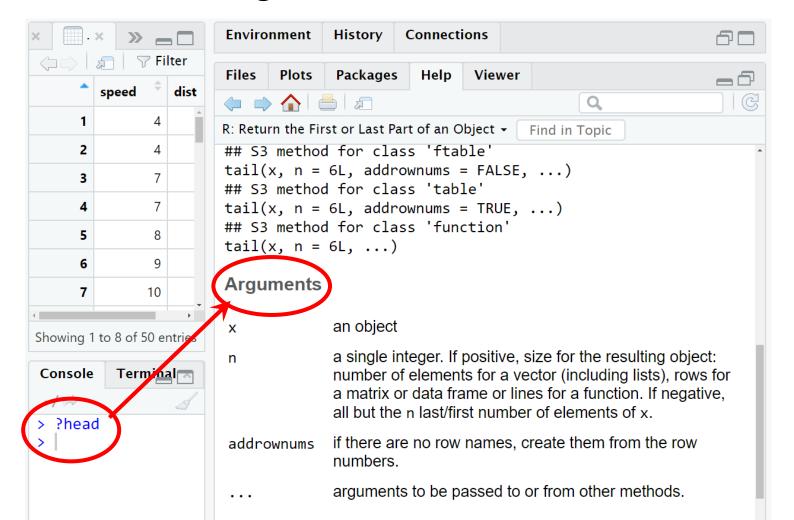
```
> head(cars)
  speed dist
2
      4
           10
3
4
      7 22
5
           16
6
           10
```

Functions are called in the format function (argument)

Functions can have any number of required arguments or optional arguments

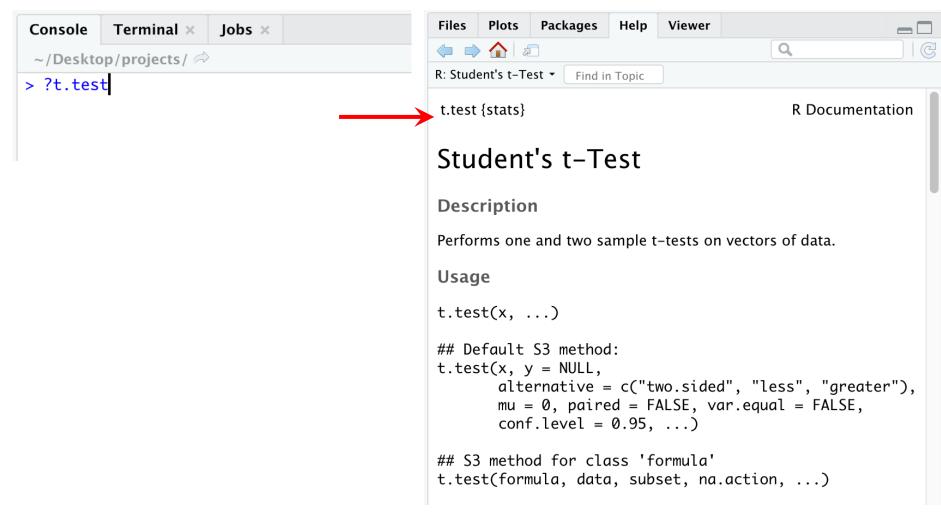

head (cars, 8) will show the first 8 lines of the data frame instead of the default 6:

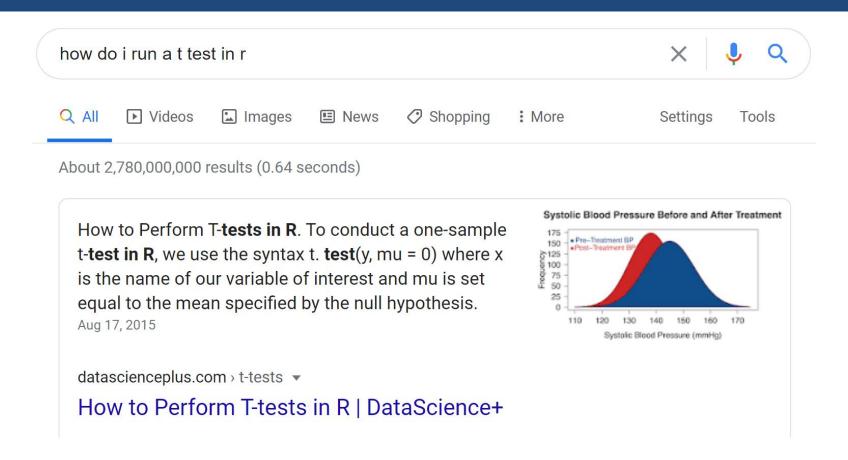
```
> head(cars, 8)
  speed dist
      4 10
3
    7 22
5
          16
      8
          10
     10
          18
          26
```


We can implicitly or explicitly pass arguments

```
head (x=cars, n=8)
> head(cars, 8)
  speed dist
                            speed dist
            10
                                     10
            22
                                     22
            16
                                     16
            10
                                     10
      10
            18
                               10
                                     18
            26
                                     26
                               10
```

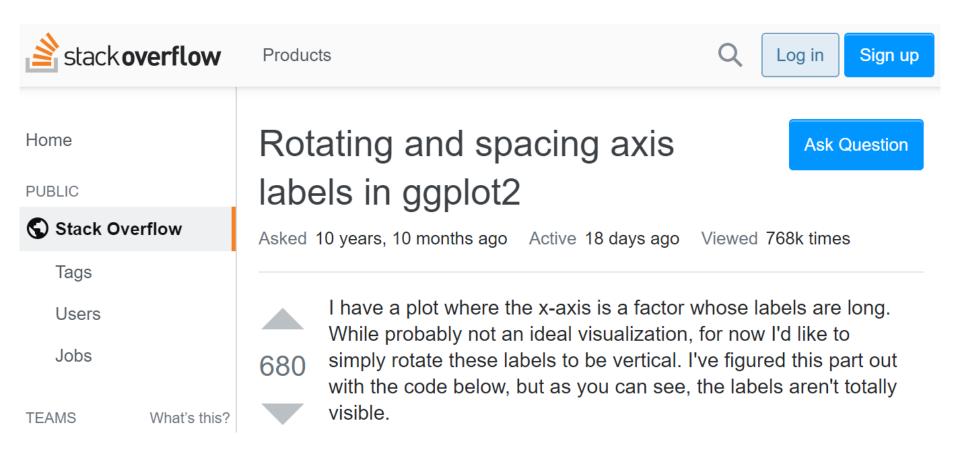
More information about what a function does and/or requires can be accessed with ?function


?function has argument information


Troubleshooting

Ask RStudio for help

Type ?function into console



Ask Google for help

- G Error in t.test.default(x, y) : not enough 'x' observations
- Q Error in t.test.default(x, y) : not enough 'x' observations Google Search

Ask StackOverflow for help

Open Coding Hour: Your resource for all things informatics

EVERYONEWELCOME

Students

Profs

Researchers

Newbies

Novice

Advanced

EVERY WEDNESDAY:

STUCK ON A COMPUTING PROBLEM?

WANT ADVICE ON ANALYSIS?

NEED HELP PLOTTING YOUR DATA?

WANT TO GET STARTED LEARNING TO PROGRAM?

WHEN

Wednesdays

12:30-1:30pm

WHERE

MBB 2.232